Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(5): 991-1008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376345

RESUMO

The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas Serina-Treonina Quinases , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico
2.
Acta Pharm Sin B ; 12(11): 4122-4137, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36386480

RESUMO

Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.

3.
Clin Transl Med ; 11(10): e548, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709754

RESUMO

RATIONALE: A high risk of post-operative recurrence contributes to the poor prognosis and low survival rate of oesophageal squamous cell carcinoma (ESCC) patients. Increasing experimental evidence suggests that integrin adhesion receptors, in particular integrin αv (ITGAV), are important for cancer cell survival, proliferation and migration. Therefore, targeting ITGAV may be a rational approach for preventing ESCC recurrence. MATERIALS AND METHODS: Protein levels of ITGAV were determined in human ESCC tumour tissues using immunohistochemistry. MTT, propidium iodide staining, and annexin V staining were utilized to investigate cell viability, cell cycle progression, and induction of apoptosis, respectively. Computational docking was performed with the Schrödinger Suite software to visualize the interaction between indomethacin and ITGAV. Cell-derived xenograft mouse models, patient-derived xenograft (PDX) mouse models, and a humanized mouse model were employed for in vivo studies. RESULTS: ITGAV was upregulated in human ESCC tumour tissues and increased ITGAV protein levels were associated with poor prognosis. ITGAV silencing or knockout suppressed ESCC cell growth and metastatic potential. Interestingly, we identified that indomethacin can bind to ITGAV and enhance synovial apoptosis inhibitor 1 (SYVN1)-mediated degradation of ITGAV. Integrin ß3, one of the ß subunits of ITGAV, was also decreased at the protein level in the indomethacin treatment group. Importantly, indomethacin treatment suppressed ESCC tumour growth and prevented recurrence in a PDX mouse model. Moreover, indomethacin inhibited the activation of cytokine TGFß, reduced SMAD2/3 phosphorylation, and increased anti-tumour immune responses in a humanized mouse model. CONCLUSION: ITGAV is a promising therapeutic target for ESCC. Indomethacin can attenuate ESCC growth through binding to ITGAV, promoting SYVN1-mediated ubiquitination of ITGAV, and potentiating cytotoxic CD8+ T cell responses.


Assuntos
Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Indometacina/farmacologia , Integrina alfaVbeta3/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Recidiva Local de Neoplasia/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos Nus
4.
Oncogene ; 40(23): 3942-3958, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33986510

RESUMO

The mortality rate of esophageal squamous cell carcinoma (ESCC) is higher than that of other cancers worldwide owing to a lack of therapeutic targets and related drugs. This study aimed to find new drugs by targeting an efficacious therapeutic target in ESCC patients. Signal transducer and activator of transcription 3 (STAT3) is hyperactive in ESCC. Herein, we identified a novel STAT3 inhibitor, periplogenin, which strongly inhibited phosphorylation of STAT3 at Tyr705. Docking models and pull-down assays revealed that periplogenin bound directly and specifically to STAT3, leading to significant suppression of subsequent dimerization, nuclear import, and transcription activities. In addition, STAT3 knockdown cell lines were insensitive to periplogenin, whereas in contrast, STAT3-overexpressing cells were more sensitive to periplogenin, indicating that STAT3 was a target of periplogenin. Intraperitoneally administered periplogenin exhibited efficacious therapeutic effects in ESCC patient-derived xenograft models and dramatically impaired the phosphorylation of STAT3 and expression levels of STAT3-mediated downstream genes. Thus, our study demonstrated that periplogenin acted as a new STAT3 inhibitor, suppressing the growth of ESCC in vitro and in vivo, providing a basis for its potential application in ESCC treatment and prevention.


Assuntos
Digitoxigenina/análogos & derivados , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digitoxigenina/farmacologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Am J Cancer Res ; 11(4): 1410-1427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948365

RESUMO

Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.

6.
J Exp Clin Cancer Res ; 40(1): 105, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731185

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. METHODS: TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. RESULTS: TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. CONCLUSIONS: TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


Assuntos
Flavonas/uso terapêutico , TYK2 Quinase/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Flavonas/farmacologia , Humanos , Camundongos , Pessoa de Meia-Idade , Taxa de Sobrevida
7.
Commun Biol ; 4(1): 167, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547416

RESUMO

Mutations of the p53-related protein kinase (PRPK) and TP53RK-binding protein (TPRKB) cause Galloway-Mowat syndrome (GAMOS) and are found in various human cancers. We have previously shown that small compounds targeting PRPK showed anti-cancer activity against colon and skin cancer. Here we present the 2.53 Å crystal structure of the human PRPK-TPRKB-AMPPNP (adenylyl-imidodiphosphate) complex. The structure reveals details in PRPK-AMPPNP coordination and PRPK-TPRKB interaction. PRPK appears in an active conformation, albeit lacking the conventional kinase activation loop. We constructed a structural model of the human EKC/KEOPS complex, composed of PRPK, TPRKB, OSGEP, LAGE3, and GON7. Disease mutations in PRPK and TPRKB are mapped into the structure, and we show that one mutation, PRPK K238Nfs*2, lost the binding to OSGEP. Our structure also makes the virtual screening possible and paves the way for more rational drug design.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Serina-Treonina Quinases/química , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação Puntual , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Mapeamento de Interação de Proteínas , Multimerização Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína
8.
Cancer Res ; 81(4): 945-955, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33184107

RESUMO

The Wilms' tumor 1 (WT1) gene is well known as a chameleon gene. It plays a role as a tumor suppressor in Wilms' tumor but also acts as an oncogene in other cancers. Previously, our group reported that a canonical AUG starting site for the WT1 protein (augWT1) acts as a tumor suppressor, whereas a CUG starting site for the WT1 protein (cugWT1) functions as an oncogene. In this study, we report an oncogenic role of cugWT1 in the AOM/DSS-induced colon cancer mouse model and in a urethane-induced lung cancer model in mice lacking cugWT1. Development of chemically-induced tumors was significantly depressed in cugWT1-deficient mice. Moreover, glycogen synthase kinase 3ß promoted phosphorylation of cugWT1 at S64, resulting in ubiquitination and degradation of the cugWT1 associated with the F-box-/- WD repeat-containing protein 8. Overall, our findings suggest that inhibition of cugWT1 expression provides a potential candidate target for therapy. SIGNIFICANCE: These findings demonstrate that CUG-translated WT1 plays an oncogenic role in vivo, and GSK3ß-mediated phosphorylation of cugWT1 induces its ubiquitination and degradation in concert with FBXW8.


Assuntos
Glicogênio Sintase Quinase 3 beta/fisiologia , Neoplasias Renais/patologia , Proteínas WT1/genética , Tumor de Wilms/patologia , Células A549 , Animais , Células Cultivadas , Códon de Iniciação/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Células HeLa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes/genética , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Ubiquitinação/genética , Proteínas WT1/química , Proteínas WT1/metabolismo , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
9.
Front Cell Dev Biol ; 8: 556532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344441

RESUMO

Lung cancer is a leading cause cancer-related death with diversity. A promising approach to meet the need for improved cancer treatment is drug repurposing. Dasatinib, a second generation of tyrosine kinase inhibitors (TKIs), is a potent treatment agent for chronic myeloid leukemia (CML) approved by FDA, however, its off-targets and the underlying mechanisms in lung cancer have not been elucidated yet. LIM kinase 1 (LIMK1) is a serine/threonine kinase, which is highly upregulated in human cancers. Herein, we demonstrated that dasatinib dose-dependently blocked lung cancer cell proliferation and repressed LIMK1 activities by directly targeting LIMK1. It was confirmed that knockdown of LIMK1 expression suppressed lung cancer cell proliferation. From the in silico screening results, dasatinib may target to LIMK1. Indeed, dasatinib significantly inhibited the LIMK1 activity as evidenced by kinase and binding assay, and computational docking model analysis. Dasatinib inhibited lung cancer cell growth, while induced cell apoptosis as well as cell cycle arrest at the G1 phase. Meanwhile, dasatinib also suppressed the expression of markers relating cell cycle, cyclin D1, D3, and CDK2, and increased the levels of markers involved in cell apoptosis, cleaved caspase-3 and caspase-7 by downregulating phosphorylated LIMK1 (p-LIMK1) and cofilin (p-cofilin). Furthermore, in patient-derived xenografts (PDXs), dasatinib (30 mg/kg) significantly inhibited the growth of tumors in SCID mice which highly expressed LIMK1 without changing the bodyweight. In summary, our results indicate that dasatinib acts as a novel LIMK1 inhibitor to suppress the lung cancer cell proliferation in vitro and tumor growth in vivo, which suggests evidence for the application of dasatinib in lung cancer therapy.

10.
Front Mol Biosci ; 7: 577284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344501

RESUMO

7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is a metabolite of daidzein which is a representative isoflavone found in soybean. Recent studies suggested that 7,3',4'-THIF exerts a hypopigmentary effect in B16F10 cells, however, its underlying molecular mechanisms and specific target protein remain unknown. Here, we found that 7,3',4'-THIF, but not daidzein, inhibited α-melanocyte-stimulating hormone (MSH)-induced intracellular and extracellular melanin production in B16F10 cells by directly targeting melanocortin 1 receptor (MC1R). Western blot data showed that 7,3',4'-THIF inhibited α-MSH-induced tyrosinase, tyrosinase-related protein-1 (TYRP-1), and tyrosinase-related protein-2 (TYRP-2) expressions through the inhibition of Microphthalmia-associated transcription factor (MITF) expression and cAMP response element-binding (CREB) phosphorylation. 7,3',4'-THIF also inhibited α-MSH-induced dephosphorylation of AKT and phosphorylation of p38 and cAMP-dependent protein kinase (PKA). cAMP and Pull-down assays indicated that 7,3',4'-THIF strongly inhibited forskolin-induced intracellular cAMP production and bound MC1R directly by competing with α-MSH. Moreover, 7,3',4'-THIF inhibited α-MSH-induced intracellular melanin production in human epidermal melanocytes (HEMs). Collectively, these results demonstrate that 7,3',4'-THIF targets MC1R, resulting in the suppression of melanin production, suggesting a protective role for 7,3',4'-THIF against melanogenesis.

11.
Oncogene ; 39(43): 6733-6746, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32963350

RESUMO

Colon cancer is the most aggressive tumor in both men and women globally. As many the chemotherapeutic regimens have adverse side effects and contribute to the resistance and recurrence, therefore, finding novel therapeutic targets and developing effective agents are urgent. Based on the TCGA and GTEx database analysis, RSK1 and MSK2 were found abnormal expressed in colon cancer. RSK1 and MSK2 were overexpressed in colon cancer tissues confirmed by western blot and IHC. After knocking down RSK1 or MSK2, cell proliferation and anchorage-independent cell growth were markedly inhibited. Using a computer docking model, we identified a novel dual-target inhibitor, APIO-EE-07, that could block both RSK1 and MSK2 kinase activity in a dose-dependent manner. APIO-EE-07 inhibited cell growth and induced apoptosis and also increased expression of Bax as well as cleaved caspase-3 and -PARP in colon cancer cells by downregulating RSK1 and MSK2 downstream targets, including CREB and ATF1. Furthermore, APIO-EE-07 decreased tumor volume and weight in human patient-derived xenografts tumors implanted in SCID mice. In summary, our results demonstrate that RSK1 and MSK2 are the potential targets for the treatment of colon cancer. APIO-EE-07, a novel dual-target inhibitor of RSK1 and MSK2, can suppress the growth of colon cancer by attenuating RSK1 and MSK2 signaling.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Cristalografia por Raios X , Descoberta de Drogas , Feminino , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/ultraestrutura , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Theranostics ; 10(21): 9721-9740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863956

RESUMO

Rationale: Melanoma is an aggressive tumor of the skin and drug resistance is still a major problem in melanoma therapy. Novel targets and effective agents to overcome drug resistant melanoma are urgently needed in clinical therapy. Methods: Gene Expression Omnibus (GEO) database analysis, pathway enrichment analysis, and survival rate analysis were utilized to identify a candidate target. An anchorage-independent cell growth assay, flow cytometry, Western blot, and a xenograft mouse model were used to study the function of Aurora kinase B (AURKB) in both drug-sensitive and drug-resistant melanoma. Next, HI-511, a novel dual-target inhibitor targeting both AURKB and BRAF V600E, was designed and examined by an in vitro kinase assay. Methods as indicated above in addition to a BRAF V600E/PTEN-loss melanoma mouse model were used to demonstrate the effect of HI-511 on melanoma development in vitro and in vivo. Results: AURKB is highly expressed in melanoma and especially in vemurafenib-resistant melanoma and the expression was correlated with patient survival rate. Knocking down AURKB inhibited cell growth and induced apoptosis in melanoma, which was associated with the BRAF/MEK/ERKs and PI3-K/AKT signaling pathways. Importantly, we found that HI-511, a novel dual-target inhibitor against AURKB and BRAF V600E, suppresses both vemurafenib-sensitive and vemurafenib-resistant melanoma growth in vitro and in vivo by inducing apoptosis and mediating the inhibition of the BRAF/MEK/ERKs and PI3K/AKT signaling pathways. Conclusion: AURKB is a potential target for melanoma treatment. HI-511, a novel dual-target inhibitor against both AURKB and BRAF V600E, could achieve durable suppression of melanoma growth, even drug-resistant melanoma growth.


Assuntos
Aurora Quinase B/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vemurafenib/farmacologia
13.
Cancer Res ; 80(19): 4158-4171, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816906

RESUMO

The key functional molecules involved in inflammatory bowel disease (IBD) and IBD-induced colorectal tumorigenesis remain unclear. In this study, we found that the apoptosis repressor with caspase recruitment domain (ARC) protein plays critical roles in IBD. ARC-deficient mice exhibited substantially higher susceptibility to dextran sulfate sodium (DSS)-induced IBD compared with wild-type mice. The inflammatory burden induced in ARC-deficient conditions was inversely correlated with CCL5 and CXCL5 levels in immune cells, especially CD4-positive T cells. Pathologically, ARC expression in immune cells was significantly decreased in clinical biopsy specimens from patients with IBD compared with normal subjects. In addition, ARC levels inversely correlated with CCL5 and CXCL5 levels in human biopsy specimens. ARC interacted with TNF receptor associated factor (TRAF) 6, regulating ubiquitination of TRAF6, which was associated with NF-κB signaling. Importantly, we identified a novel ubiquitination site at lysine 461, which was critical in the function of ARC in IBD. ARC played a critical role in IBD and IBD-associated colon cancer in a bone marrow transplantation model and azoxymethane/DSS-induced colitis cancer mouse models. Overall, these findings reveal that ARC is critically involved in the maintenance of intestinal homeostasis and protection against IBD through its ubiquitination of TRAF6 and subsequent modulation of NF-κB activation in T cells. SIGNIFICANCE: This study uncovers a crucial role of ARC in the immune system and IBD, giving rise to a novel strategy for IBD and IBD-associated colon cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Colorretais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Musculares/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Azoximetano/toxicidade , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Quimiocina CCL5/metabolismo , Quimiocina CXCL5/metabolismo , Colite/induzido quimicamente , Neoplasias Colorretais/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/genética , Ubiquitinação
14.
Oncogene ; 39(31): 5405-5419, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572158

RESUMO

SDCBP is an adapter protein containing two tandem PDZ domains mediating cell adhesion. The role and underlying molecular mechanism of SDCBP in ESCC remain obscure. Here, we report that SDCBP is frequently overexpressed in ESCC tissues and cells compared to normal controls and that its overexpression is correlated with late clinical stage and predicts poor prognosis in ESCC patients. Functionally, high expression of SDCBP is positively related to ESCC progression both in vitro and in vivo. Furthermore, mechanistic studies show that SDCBP activates the EGFR-PI3K-Akt signaling pathway by binding to EGFR and preventing EGFR internalization. Moreover, we provide evidence that AURKA binds to SDCBP and phosphorylates it at the Ser131 and Thr200 sites to inhibit ubiquitination-mediated SDCBP degradation. More importantly, the sites at which AURKA phosphorylates SDCBP are crucial for the EGFR signaling-mediated oncogenic function of SDCBP. Taken together, we propose that SDCBP phosphorylation by AURKA prevents SDCBP degradation and promotes ESCC tumor growth through the EGFR-PI3K-Akt signaling pathway. Our findings unveil a new AURKA-SDCBP-EGFR axis that is involved in ESCC progression and provide a promising therapeutic target for ESCC treatment in the clinic.


Assuntos
Receptores ErbB/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sinteninas/genética , Progressão da Doença , Feminino , Humanos , Masculino , Transdução de Sinais
15.
Theranostics ; 10(14): 6201-6215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483448

RESUMO

Background: Gastric cancer remains the second leading cause of cancer-related death, and the third in mortality due to lack of effective therapeutic targets for late stage cancer patients. This study aims to identify potential druggable target biomarkers as potential therapeutic options for patients with gastric cancer. Methods: Immunohistochemistry of human gastric tumor tissues was conducted to determine the expression level of cyclin-dependent kinase 12 (CDK12). Multiple in vitro and in vivo assays such as RNAi, mass spectrometry, computer docking models, kinase assays, cell xenograft NU/NU mouse models (CDXs) and patient-derived xenograft NOD/SCID mouse models (PDXs) were conducted to study the function and molecular interaction of CDK12 with p21 activated kinase 2 (PAK2), as well as to find CDK12 inhibitors as potential treatment options for human gastric cancer. Results: Here we identified that CDK12 is a driver gene in human gastric cancer growth. Mechanistically, CDK12 directly binds to and phosphorylates PAK2 at T134/T169 to activate MAPK signaling pathway. We further identified FDA approved clinical drug procaterol can serve as an effective CDK12 inhibitor, leading to dramatic restriction of cancer cell proliferation and tumor growth in human gastric cancer cells and PDXs. Conclusions: Our data highlight the potential of CDK12/PAK2 as therapeutic targets for patients with gastric cancer, and we propose procaterol treatment as a novel therapeutic strategy for human gastric cancer.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Procaterol/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Broncodilatadores/farmacologia , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosforilação , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/metabolismo
16.
Br J Pharmacol ; 177(10): 2303-2319, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985814

RESUMO

BACKGROUND AND PURPOSE: Overexpression or aberrant activation of the T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes gene expression and growth of solid tumours, implying that TOPK would be a rational target in developing novel anticancer drugs. Acetylshikonin, a diterpenoid compound isolated from Lithospermum erythrorhizon root, exerts a range of biological activities. Here we have investigated whether acetylshikonin, by acting as an inhibitor of TOPK, can attenuate the proliferation of colorectal cancer cells and the growth of patient-derived tumours, in vitro and in vivo. EXPERIMENTAL APPROACH: Targets of acetylshikonin, were identified using kinase profiling analysis, kinetic/binding assay, and computational docking analysis and knock-down techniques. Effects of acetylshikonin on colorectal cancer growth and the underlying mechanisms were evaluated in cell proliferation assays, propidium iodide and annexin-V staining analyses and western blots. Patient-derived tumour xenografts in mice (PDX) and immunohistochemistry were used to assess anti-tumour effects of acetylshikonin. KEY RESULTS: Acetylshikonin directly inhibited TOPK activity, interacting with the ATP-binding pocket of TOPK. Acetylshikonin suppressed cell proliferation by inducing cell cycle arrest at the G1 phase, stimulated apoptosis, and increased the expression of apoptotic biomarkers in colorectal cancer cell lines. Mechanistically, acetylshikonin diminished the phosphorylation and activation of TOPK signalling. Furthermore, acetylshikonin decreased the volume of PDX tumours and reduced the expression of TOPK signalling pathway in xenograft tumours. CONCLUSION AND IMPLICATIONS: Acetylshikonin suppressed growth of colorectal cancer cells by attenuating TOPK signalling. Targeted inhibition of TOPK by acetylshikonin might be a promising new approach to the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Células Matadoras Ativadas por Linfocina , Animais , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno
17.
BMC Cancer ; 20(1): 43, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959146

RESUMO

Following publication of the original article [1], the authors reported the errors in Fig. 1C and D, Fig. 2, Fig. 4B and C and Fig. 6D and E.

18.
Cancer Prev Res (Phila) ; 12(12): 849-860, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31554627

RESUMO

Scutellarin is a flavonoid compound that is found in Scutellaria barbata It has been reported to exhibit anticancer and anti-inflammation activities. However, the anticancer properties of scutellarin and its molecular targets have not been investigated in esophageal squamous cell carcinoma (ESCC). In the current study, we report that scutellarin is a potential AKT inhibitor that suppresses patient-derived xenograft ESCC tumor growth. To identify possible molecular targets of scutellarin, potential candidate proteins were screened by an in vitro kinase assay and Western blotting. We found that scutellarin directly binds to the AKT1/2 proteins and inhibits activities of AKT1/2 in vitro The AKT protein is activated in ESCC tissues and knockdown of AKT significantly suppresses growth of ESCC cells. Scutellarin significantly inhibits anchorage-dependent and independent cell growth and induces G2 phase cell-cycle arrest in ESCC cells. The inhibition of cell growth by scutellarin is dependent on the expression of the AKT protein. Notably, scutellarin strongly suppresses patient-derived xenograft ESCC tumor growth in an in vivo mouse model. Taken together, our data suggest that scutellarin is a novel AKT inhibitor that may prevent progression of ESCC.


Assuntos
Apigenina/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Glucuronatos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Idoso , Animais , Apigenina/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glucuronatos/uso terapêutico , Células HEK293 , Humanos , Masculino , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Carcinog ; 58(7): 1248-1259, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100197

RESUMO

Purpurogallin is a natural compound that is extracted from nutgalls and oak bark and it possesses antioxidant, anticancer, and anti-inflammatory properties. However, the anticancer capacity of purpurogallin and its molecular target have not been investigated in esophageal squamous cell carcinoma (ESCC). Herein, we report that purpurogallin suppresses ESCC cell growth by directly targeting the mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling pathway. We found that purpurogallin inhibits anchorage-dependent and -independent ESCC growth. The results of in vitro kinase assays and cell-based assays indicated that purpurogallin also strongly attenuates the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and also directly binds to and inhibits MEK1 and MEK2 activity. Furthermore, purpurogallin contributed to S and G2 phase cell cycle arrest by reducing cyclin A2 and cyclin B1 expression and also induced apoptosis by activating poly (ADP ribose) polymerase (PARP). Notably, purpurogallin suppressed patient-derived ESCC tumor growth in an in vivo mouse model. These findings indicated that purpurogallin is a novel MEK1/2 inhibitor that could be useful for treating ESCC.


Assuntos
Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina A2/biossíntese , Ciclina B1/biossíntese , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Preparações de Plantas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
EBioMedicine ; 44: 361-374, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31085102

RESUMO

BACKGROUND: Our preclinical data showed that the leukotriene A4 hydrolase (LTA4H) pathway plays a role in colorectal cancer (CRC). High expression of LTA4H and leukotriene B4 receptor type 1 (BLT1) were also associated with CRC survival probability. Clinical samples were evaluated to determine whether LTA4H could serve as a therapeutic target and whether leukotriene B4 (LTB4) could be used as a biomarker for evaluating the efficacy of bestatin in CRC. METHODS: Patients with Stage I-III CRC did or did not receive bestatin prior to surgery. Evaluable pairwise CRC patient blood samples were collected to evaluate LTB4 concentration. Tissues were processed by immunohistochemistry to detect the LTA4H pathway and Ki-67 expression. We also determined whether LTA4H or BLT1 was associated with CRC survival probability and explored the mechanism of bestatin action in CRC. FINDINGS: Samples from 13 CRC patients showed a significant decrease in LTB4, the LTA4H signaling pathway, and Ki-67 in the bestatin-treated group compared with the untreated group. LTA4H and BLT1 are overexpressed in CRC and associated with CRC survival probability. Bestatin effectively inhibited LTB4 and tumorigenesis in the ApcMin/+ and CRC patient-derived xenograft mouse model. INTERPRETATION: These results demonstrate that LTB4 could serve as a biomarker for evaluating bestatin efficacy in CRC and the antitumor effects of bestatin through its targeting of LTA4H and support further studies focusing on LTA4H inhibition in CRC.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Leucina/análogos & derivados , Adulto , Idoso , Animais , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Leucina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Estadiamento de Neoplasias , Prognóstico , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...